Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Am J Sports Med ; : 3635465241240140, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619003

RESUMO

BACKGROUND: Rotator cuff tears have been repaired using the transosseous method for decades. The direct suture (DS) technique has been widely used for rotator cuff tears; however, the retear rate is relatively high. Suture anchors are now used frequently for rotator cuff repair (RCR) in accordance with recent developments in materials. However, polyether ether ketone (PEEK) may still cause complications such as the formation of cysts and osteophytes. Some studies have developed the inlay suture (IS) technique for RCR. PURPOSE/HYPOTHESIS: To compare how 3 different surgical techniques-namely, the DS, IS, and PEEK suture anchor (PSA)-affect tendon-bone healing after RCR. We hypothesized that the IS technique would lead to better tendon-to-bone healing and that the repaired structure would be similar to the normal enthesis. STUDY DESIGN: Controlled laboratory study. METHODS: Acute infraspinatus tendon tears were created in 36 six-month-old male rabbits, which were divided into 3 groups based on the technique used for RCR: DS, IS, and PSA. Animals were euthanized at 6 and 12 weeks postoperatively and underwent a histological assessment and imaging. The expression of related proteins was demonstrated by immunohistochemistry and immunofluorescence staining. Mechanical properties were evaluated by biomechanical testing. RESULTS: At 12 weeks, regeneration of the enthesis was observed in the 3 groups. However, the DS group showed a lower type I collagen content than the PSA and IS groups, which was similar to the results for scleraxis. The DS group displayed a significantly inferior type II collagen expression and proteoglycan deposition after safranin O/fast green and sirius red staining. With regard to runt-related transcription factor 2 and alkaline phosphatase, the IS group showed upregulated expression levels compared with the other 2 groups. CONCLUSION: Compared with the DS technique, the PSA and IS techniques contributed to the improved maturation of tendons and fibrocartilage regeneration, while the IS technique particularly promoted osteogenesis at the enthesis. CLINICAL RELEVANCE: The IS and PSA techniques may be more beneficial for tendon-bone healing after RCR.

2.
Ecotoxicol Environ Saf ; 274: 116223, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493704

RESUMO

Afidopyropen has high activity against pests. However, it poses potential risks to the soil ecology after entering the environment. The toxicity of afidopyropen to earthworms (Eisenia fetida) was studied for the first time in this study. The results showed that afidopyropen had low level of acute toxicity to E. fetida. Under the stimulation of chronic toxicity, the increase of reactive oxygen species (ROS) level activated the antioxidant and detoxification system, which led to the increase of superoxide dismutase (SOD) and glutathione S-transferase (GST) activities. Lipid peroxidation and DNA damage were characterized by the increase of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents. Meanwhile, the functional genes SOD, CAT, GST, heat shock protein 70 (HSP70), transcriptionally controlled tumor protein (TCTP), and annetocin (ANN) played a synergistic role in antioxidant defense. However, the comprehensive toxicity of high concentration still increased on the 28th day. In addition, strong histopathological damage in the body wall and intestine was observed, accompanied by weight loss, which indicated that afidopyropen inhibited the growth of E. fetida. The molecular docking revealed that afidopyrene combined with the surface structure of SOD and GST proteins, which made SOD and GST become sensitive biomarkers reflecting the toxicity of afidopyropen to E. fetida. Summing up, afidopyropen destroys the homeostasis of E. fetida through chronic toxic. These results provide theoretical data for evaluating the environmental risk of afidopyropen to soil ecosystem.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis , Lactonas , Oligoquetos , Poluentes do Solo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Ecossistema , Simulação de Acoplamento Molecular , Glutationa Transferase/metabolismo , Poluentes do Solo/metabolismo , Superóxido Dismutase/metabolismo , Solo/química , Malondialdeído/metabolismo , Estresse Oxidativo
3.
Arthrosc Tech ; 13(2): 102859, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435269

RESUMO

The options for surgical treatment of an anterior labrum lesion have become extensive. Arthroscopic treatments are widely used as an improved minimally invasive option with a quick recovery. Arthroscopic treatment of the anterior glenoid labrum generally requires the creation of two working portals. However, arthroscopic treatment through a single anterior portal is still successful. Our single-portal technique avoids interference between instruments inserted through the two working portals and minimizes postoperative scarring, pain, and reduction in range of motion. The purpose of this article was to describe our single-portal arthroscopy technique to repair the anterior glenoid labrum.

4.
Parasit Vectors ; 17(1): 46, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303078

RESUMO

BACKGROUND: Malaria-associated acute lung injury (MA-ALI) is a well-recognized clinical complication of severe, complicated malaria that is partly driven by sequestrations of infected red blood cells (iRBCs) on lung postcapillary induced impaired blood flow. In earlier studies the mechanosensitive Piezo1 channel emerged as a regulator of mechanical stimuli, but the function and underlying mechanism of Piezo1 impacting MA-ALI severity via sensing the impaired pulmonary blood flow are still not fully elucidated. Thus, the present study aimed to explore the role of Piezo1 in the severity of murine MA-ALI. METHODS: Here, we utilized a widely accepted murine model of MA-ALI using C57BL/6 mice with Plasmodium berghei ANKA infection and then added a Piezo1 inhibitor (GsMTx4) to the model. The iRBC-stimulated Raw264.7 macrophages in vitro were also targeted with GsMTx4 to further explore the potential mechanism. RESULTS: Our data showed an elevation in the expression of Piezo1 and number of Piezo1+-CD68+ macrophages in lung tissues of the experimental MA-ALI mice. Compared to the infected control mice, the blockage of Piezo1 with GsMTx4 dramatically improved the survival rate but decreased body weight loss, peripheral blood parasitemia/lung parasite burden, experimental cerebral malaria incidence, total protein concentrations in bronchoalveolar lavage fluid, lung wet/dry weight ratio, vascular leakage, pathological damage, apoptosis and number of CD68+ and CD86+ macrophages in lung tissues. This was accompanied by a dramatic increase in the number of CD206+ macrophages (M2-like subtype), upregulation of anti-inflammatory cytokines (e.g. IL-4 and IL-10) and downregulation of pro-inflammatory cytokines (e.g. TNF-α and IL-1ß). In addition, GsMTx4 treatment remarkably decreased pulmonary intracellular iron accumulation, protein level of 4-HNE (an activator of ferroptosis) and the number of CD68+-Piezo1+ and CD68+-4-HNE+ macrophages but significantly increased protein levels of GPX4 (an inhibitor of ferroptosis) in experimental MA-ALI mice. Similarly, in vitro study showed that the administration of GsMTx4 led to a remarkable elevation in the mRNA levels of CD206, IL-4, IL-10 and GPX-4 but to a substantial decline in CD86, TNF-α, IL-1ß and 4-HNE in the iRBC-stimulated Raw264.7 cells. CONCLUSIONS: Our findings indicated that blockage of Piezo1 with GsMTx4 alleviated the severity of experimental MA-ALI in mice partly by triggering pulmonary macrophage M2 polarization and subsequent anti-inflammatory responses but inhibited apoptosis and ferroptosis in lung tissue. Our data suggested that targeting Piezo1 in macrophages could be a promising therapeutic strategy for treating MA-ALI.


Assuntos
Lesão Pulmonar Aguda , Peptídeos e Proteínas de Sinalização Intercelular , Canais Iônicos , Malária Cerebral , Venenos de Aranha , Animais , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/parasitologia , Citocinas/genética , Citocinas/metabolismo , Interleucina-10/metabolismo , Interleucina-4 , Canais Iônicos/antagonistas & inibidores , Lipopolissacarídeos , Pulmão/parasitologia , Malária Cerebral/complicações , Malária Cerebral/tratamento farmacológico , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Venenos de Aranha/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico
5.
Med. oral patol. oral cir. bucal (Internet) ; 29(1): e27-e35, Ene. 2024. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-229185

RESUMO

Background: The relationship between the impacted mandibular third molar (IMTM) and the external root re-sorption (ERR) of the mandibular second molar (MSM) was analysed with cone-beam computed tomography(CBCT). The risk factors affecting the ERR of the MSM were examined to provide a reference.Material and Methods: A total of 327 patients (total: 578 teeth) admitted to the Affiliated Hospital of YanbianUniversity for IMTM extraction from January 2017 to December 2019 was chosen and divided according togender and age. The correlation between the IMTM and ERR of MSM was analysed, including inclination angle,impaction direction and depth. The relationship of mandibular ascending ramus classification with ERR of MSMwas also analysed. In addition, the correlation between the MTM impaction type and the severity of ERR wasanalysed.Results: The incidence of ERR of MSM in male patients was higher than in females (27.9% vs.17.6%, p = 0.018).The occurrence and the site of ERR showed statistical differences in the inclination angle [(≤20°, 3.6%) vs. (21°-40°, 27.1%) vs. (41°-60°, 27.6%) vs. (61°-80°, 25.6%) vs. (>80°, 31.7%), p <0.001], impaction direction [(Vertical,1.1%) vs. (Mesial, 32.7%) vs. (Horizontal, 25.3%), p <0.001] and depth of MTM [(Low position, 38.6%) vs. (Medi-an position, 32.0%) vs. (High position, 13.7%), p <0.001]. Also, there was a significant difference in the mandib-ular ascending ramus type [(Class I, 17.4%) vs. (Class II, 32.3%) vs. (Class III, 44.9%), p <0.001]. In addition, theseverity of ERR showed statistical differences in the mesial (40.9%, p<0.05), lower impaction (54.5%, p<0.05)depth of MTM and type III of mandibular ascending ramus (63.6%, p<0.05).Conclusions: The inclination angle, impaction direction, and depth of MTM were the influencing factors for theoccurrence and site of ERR.(AU)


Assuntos
Humanos , Masculino , Feminino , Dente Serotino/cirurgia , Tomografia Computadorizada de Feixe Cônico , Dente Impactado , Reabsorção da Raiz , Mandíbula/diagnóstico por imagem , Odontologia , Medicina Bucal , Saúde Bucal
6.
Comput Struct Biotechnol J ; 23: 431-445, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38223343

RESUMO

Digestive system cancers are prevalent diseases with a high mortality rate, posing a significant threat to public health and economic burden. The diagnosis and treatment of digestive system cancer confront conventional cancer problems, such as tumor heterogeneity and drug resistance. Single-cell sequencing (SCS) emerged at times required and has developed from single-cell RNA-seq (scRNA-seq) to the single-cell multi-omics era represented by single-cell spatial transcriptomics (ST). This article comprehensively reviews the advances of single-cell omics technology in the study of digestive system tumors. While analyzing and summarizing the research cases, vital details on the sequencing platform, sample information, sampling method, and key findings are provided. Meanwhile, we summarize the commonly used SCS platforms and their features, as well as the advantages of multi-omics technologies in combination. Finally, the development trends and prospects of the application of single-cell multi-omics technology in digestive system cancer research are prospected.

7.
ACS Appl Mater Interfaces ; 16(1): 292-304, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38133932

RESUMO

Rotator cuff tear (RCT) is a prevalent shoulder injury that poses challenges for achieving continuous and functional regeneration of the tendon-to-bone interface (TBI). In this study, we controlled the delivery of growth factors (GFs) from liposomal nanohybrid cerasomes by ultrasound and implanted three-dimensional printed polycaprolactone (PCL) scaffolds modified with polydopamine loaded with bone marrow mesenchymal stem cells (BMSCs) to repair tears of the infraspinatus tendon in a lapine model. Direct suturing (control, CTL) was used as a control. The PCL/BMSC/cerasome (PBC) devices are sutured with the enthesis of the infraspinatus tendon. The cerasomes and PCL scaffolds are highly stable with excellent biocompatibility. The roles of GFs BMP2, TGFß1, and FGF2 in tissue-specific differentiation are validated. Compared with the CTL group, the PBC group had significantly greater proteoglycan deposition (P = 0.0218), collagen volume fraction (P = 0.0078), and proportions of collagen I (P = 0.0085) and collagen III (P = 0.0048). Biotin-labeled in situ hybridization revealed a high rate of survival for transplanted BMSCs. Collagen type co-staining at the TBI is consistent with multiple collagen regeneration. Our studies demonstrate the validity of biomimetic scaffolds of TBI with BMSC-seeded PCL scaffolds and GF-loaded cerasomes to enhance the treatment outcomes for RCTs.


Assuntos
Células-Tronco Mesenquimais , Poliésteres , Tecidos Suporte , Biomimética , Tendões , Colágeno/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células da Medula Óssea
8.
EMBO Rep ; 24(9): e56512, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37437058

RESUMO

Long interspersed element 1 (LINE-1) is the only active autonomous mobile element in the human genome. Its transposition can exert deleterious effects on the structure and function of the host genome and cause sporadic genetic diseases. Tight control of LINE-1 mobilization by the host is crucial for genetic stability. In this study, we report that MOV10 recruits the main decapping enzyme DCP2 to LINE-1 RNA and forms a complex of MOV10, DCP2, and LINE-1 RNP, exhibiting liquid-liquid phase separation (LLPS) properties. DCP2 cooperates with MOV10 to decap LINE-1 RNA, which causes degradation of LINE-1 RNA and thus reduces LINE-1 retrotransposition. We here identify DCP2 as one of the key effector proteins determining LINE-1 replication, and elucidate an LLPS mechanism that facilitates the anti-LINE-1 action of MOV10 and DCP2.


Assuntos
Grânulos Citoplasmáticos , RNA Helicases , Humanos , Grânulos Citoplasmáticos/metabolismo , Endorribonucleases/genética , Elementos Nucleotídeos Longos e Dispersos , RNA/metabolismo , RNA Helicases/metabolismo
9.
Virus Res ; 334: 199164, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379907

RESUMO

Vaccines and drugs are two effective medical interventions to mitigate SARS-CoV-2 infection. Three SARS-CoV-2 inhibitors, remdesivir, paxlovid, and molnupiravir, have been approved for treating COVID-19 patients, but more are needed, because each drug has its limitation of usage and SARS-CoV-2 constantly develops drug resistance mutations. In addition, SARS-CoV-2 drugs have the potential to be repurposed to inhibit new human coronaviruses, thus help to prepare for future coronavirus outbreaks. We have screened a library of microbial metabolites to discover new SARS-CoV-2 inhibitors. To facilitate this screening effort, we generated a recombinant SARS-CoV-2 Delta variant carrying the nano luciferase as a reporter for measuring viral infection. Six compounds were found to inhibit SARS-CoV-2 at the half maximal inhibitory concentration (IC50) below 1 µM, including the anthracycline drug aclarubicin that markedly reduced viral RNA-dependent RNA polymerase (RdRp)-mediated gene expression, whereas other anthracyclines inhibited SARS-CoV-2 by activating the expression of interferon and antiviral genes. As the most commonly prescribed anti-cancer drugs, anthracyclines hold the promise of becoming new SARS-CoV-2 inhibitors.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antraciclinas/farmacologia , Antivirais/farmacologia , Antivirais/metabolismo
11.
Int J Clin Pract ; 2023: 9563476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36694610

RESUMO

Objective: To analyze differences in the positional relationships between the mandibular third molar (MTM) and the mandibular canal in Korean and Han patients using cone-beam computed tomography (CBCT) and to provide a basis for preoperative risk assessments. Materials and Methods: The CBCT imaging data of 260 Korean and Han patients were collected. The patients' genders, ages, impaction types and depths, relative positions between the MTMs and the mandibular nerve canals, and the shortest distances and shapes at the root tips and cortical bones were all recorded and analyzed. All data were compared using the nonparametric test, ordered logistic regression analysis, a chi-square test, and Fisher's exact test. Results: The relationship between the mandibular canal and the relative position of the MTM differed between Korean and Han patients, mainly in the different types of impactions, and the difference was statistically significant (P < 0.05). The shortest distance between the mesioangular and horizontally impacted mandibular canals and the buccal side of the MTM in Korean patients was less than in Han patients, and the difference was statistically significant (P < 0.05). For horizontal impactions, the probability of cortical bone interruption was 1.980 times greater in Korean patients than in Han patients, and the difference was statistically significant (P < 0.05). The significance threshold was set at 0.05. Conclusion: There are some differences in the positional relationship between the mandibular canal in the MTM region and the rate of cortical bone disruption between Koreans from the Yanbian area and the Hans. This should gain clinical attention.


Assuntos
Canal Mandibular , Dente Serotino , Feminino , Humanos , Masculino , Tomografia Computadorizada de Feixe Cônico/métodos , População do Leste Asiático , Mandíbula/diagnóstico por imagem , Canal Mandibular/diagnóstico por imagem , Dente Serotino/diagnóstico por imagem , Dente Serotino/cirurgia
12.
Acta Trop ; 239: 106815, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608749

RESUMO

Liver injury is a common clinical feature of Plasmodium spp. infection and contributes to multi-organ failure of severe malaria. Malaria-derived exosomes (MD-Exos) have recently engaged as key mediators in parasite-host interactions, modulating the subsequent pathogenic process. However, the role of MD-Exos in malaria-related liver injury and the underlying mechanisms remain unclear. Herein, exosomes from C57BL/6 mice infected with or without P. berghei ANKA serum (namely inf-Exos or un-Exos) were isolated and characterized by transmission electron microscopy, western blotting, and nanoparticle tracking analysis. The miRNAs profiling between inf-Exos and un-Exos were generated using RNA-seq and qPCR. The functions of inf-Exos on liver injury were investigated after two types of exosomes injected into mice intravenously (i.v.), by examining histopathological and apoptotic changes, macrophage polarization, and pro-inflammatory response. The infected red blood cells-stimulated mouse Raw264.7 macrophage cells targeted by inf-Exos or un-Exos were cultured for further study and verification the potential mechanisms. We found that both inf-Exos and un-Exos displayed a typical cup-shaped structure with a diameter of 60-200 nm, and had a positive expression of exosomal markers (e.g., CD9, CD63, and CD81). Compared with infected control mice, the treatment of inf-Exos but not un-Exos dramatically enhanced peripheral blood parasitemia and ECM incidence, exacerbated liver histopathological damage, elevated numbers of liver apoptotic cells, CD68+and CD86+ macrophages. The CD68+-TREM-1+ macrophages in liver tissues and the mRNA levels of pro-inflammatory cytokines (e.g., iNOS, TNF-α, IL-1ß, and IL-6) were increased by inf-Exos treatment in vivo. Meanwhile, the treatment of inf-Exos resulted in a substantial increase of the mRNA levels of CD86, iNOS, TNF-α, IL-1ß, and IL-6, but led to a remarkable decrease of Bcl-6 and SOCS-1 in Raw264.7 cells stimulated with iRBC in vitro. Notably, compared to un-Exos, five types of miRNAs (including miR-10a-5p, miR-10b-5p, miR-155-5p, miR-205-5p, and miR-21a-5p), that were previously reported to target Bcl-6 or SOCS-1, present higher abundance on inf-Exos, as demonstrated by RNA-seq and qPCR. Collectively, our data suggest that inf-Exos exacerbate malaria-induced liver pathology via triggering excessive pro-inflammatory response and promoting macrophage M1 polarization. Our findings will provide new insights into the roles of inf-Exos in malaria parasite-host interaction and pathogenesis of liver injury.


Assuntos
Exossomos , Malária , MicroRNAs , Camundongos , Animais , Plasmodium berghei/genética , Exossomos/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-6 , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fígado/metabolismo , RNA Mensageiro/metabolismo , Malária/complicações
13.
Front Microbiol ; 13: 988944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532440

RESUMO

Human T-cell leukemia virus type 1 is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T-cell leukemia-lymphoma (ATL). The HTLV-1 basic leucine zipper factor (HBZ) has been associated to the cancer-inducing properties of this virus, although the exact mechanism is unknown. In this study, we identified nucleophosmin (NPM1/B23) as a new interaction partner of HBZ. We show that sHBZ and the less abundant uHBZ isoform interact with nucleolar NPM1/B23 in infected cells and HTLV-1 positive patient cells, unlike equivalent antisense proteins of related non-leukemogenic HTLV-2, -3 and-4 viruses. We further demonstrate that sHBZ association to NPM1/B23 is sensitive to RNase. Interestingly, sHBZ was shown to interact with its own RNA. Through siRNA and overexpression experiments, we further provide evidence that NPM1/B23 acts negatively on viral gene expression with potential impact on cell transformation. Our results hence provide a new insight over HBZ-binding partners in relation to cellular localization and potential function on cell proliferation and should lead to a better understanding of the link between HBZ and ATL development.

14.
Nat Commun ; 13(1): 7139, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414669

RESUMO

Emerging evidence suggests that osteoarthritis is associated with high cholesterol levels in some osteoarthritis patients. However, the specific mechanism under this metabolic osteoarthritis phenotype remains unclear. We find that cholesterol metabolism-related gene, LRP3 (low-density lipoprotein receptor-related protein 3) is significantly reduced in high-cholesterol diet mouse's cartilage. By using Lrp3-/- mice in vivo and LRP3 lentiviral-transduced chondrocytes in vitro, we identify that LRP3 positively regulate chondrocyte extracellular matrix metabolism, and its deficiency aggravate the degeneration of cartilage. Regardless of diet, LRP3 overexpression in cartilage attenuate anterior cruciate ligament transection induced osteoarthritis progression in rats and Lrp3 knockout-induced osteoarthritis progression in mice. LRP3 knockdown upregulate syndecan-4 by activating the Ras signaling pathway. We identify syndecan-4 as a downstream molecular target of LRP3 in osteoarthritis pathogenesis. These findings suggest that cholesterol-LRP3- syndecan-4 axis plays critical roles in osteoarthritis development, and LRP3 gene therapy may provide a therapeutic regimen for osteoarthritis treatment.


Assuntos
Proteínas Relacionadas a Receptor de LDL , Osteoartrite , Sindecana-4 , Animais , Camundongos , Ratos , Cartilagem/metabolismo , Colesterol/metabolismo , Regulação para Baixo , Osteoartrite/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo
15.
Bioengineering (Basel) ; 9(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290558

RESUMO

This study aimed to establish a finite element model that vividly reflected the anterior cruciate ligament (ACL) geometry and investigated the ACL stress distribution under different loading conditions. The ACL's three-dimensional finite element model was based on a human cadaveric knee. Simulations of three loading conditions (134 N anterior tibial load, 5 Nm external tibial torque, 5 Nm internal tibial torque) on the knee model were performed. Experiments were performed on a knee specimen using a robotic universal force/moment sensor testing system to validate the model. The simulation results of the established model were in good agreement with the experimental results. Under the anterior tibial load, the highest maximal principal stresses (14.884 MPa) were localized at the femoral insertion of the ACL. Under the external and internal tibial torque, the highest maximal principal stresses (0.815 MPa and 0.933 MPa, respectively) were mainly concentrated in the mid-substance of the ACL and near the tibial insertion site, respectively. Combining the location of maximum stress and the location of common clinical ACL rupture, the most dangerous load during ACL injury may be the anterior tibial load. ACL injuries were more frequently loaded by external tibial than internal tibial torque.

16.
Carbohydr Polym ; 298: 120139, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241305

RESUMO

Cutting fluid is indispensable in the machining industry as a fluid for lubrication and cooling in the metalworking process due to their ability to significantly improve various properties of cutting fluid. Castor oil, as a common base oil and additive in cutting fluid, can be grafted onto the surface of cellulose nanocrystals (CNC) to further enhance the lubricating properties of cutting fluid. It has been shown that cellulose nanocrystals and castor oil modified cellulose nanocrystals (CO-CNC) as additives in cutting fluid have good dispersion stability and can effectively improve the lubricating properties. When the amount of CNC or CO-CNC was added in the working fluid at about 0.5 wt%, the friction coefficient was significantly reduced. According to the results from this study, cellulose nanocrystal is a promising candidate as the nontoxic and renewable additive for the improvement of diverse performances for the water-based cutting fluid.


Assuntos
Celulose , Nanopartículas , Óleo de Rícino , Celulose/química , Lubrificação , Nanopartículas/química , Água
17.
Nucleic Acids Res ; 50(11): 6137-6153, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35687115

RESUMO

Schlafen-5 (SLFN5) is an interferon-induced protein of the Schlafen family, which are involved in immune responses and oncogenesis. To date, little is known regarding its anti-HIV-1 function. Here, the authors report that overexpression of SLFN5 inhibits HIV-1 replication and reduces viral mRNA levels, whereas depletion of endogenous SLFN5 promotes HIV-1 replication. Moreover, they show that SLFN5 markedly decreases the transcriptional activity of HIV-1 long terminal repeat (LTR) via binding to two sequences in the U5-R region, which consequently represses the recruitment of RNA polymerase II to the transcription initiation site. Mutagenesis studies show the importance of nuclear localization and the N-terminal 1-570 amino acids fragment in the inhibition of HIV-1. Further mechanistic studies demonstrate that SLFN5 interacts with components of the PRC2 complex, G9a and Histone H3, thereby promoting H3K27me2 and H3K27me3 modification leading to silencing HIV-1 transcription. In concert with this, they find that SLFN5 blocks the activation of latent HIV-1. Altogether, their findings demonstrate that SLFN5 is a transcriptional repressor of HIV-1 through epigenetic modulation and a potential determinant of HIV-1 latency.


Assuntos
Proteínas de Ciclo Celular , Epigênese Genética , Infecções por HIV , HIV-1 , Proteínas de Ciclo Celular/genética , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV/genética , HIV-1/genética , HIV-1/fisiologia , Histonas/genética , Humanos , Ativação Viral , Latência Viral/genética , Replicação Viral/genética
18.
J Nat Prod ; 85(5): 1304-1314, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35427111

RESUMO

As a plant used in both food and medicine, Sauropus spatulifolius is consumed widely as a natural herbal tea, food source, and Chinese medicine. Inspired by its extensive applications, we conducted a systematic phytochemical study of the leaves of S. spatulifolius. Thirteen new diterpenoids, sauspatulifols A-M (1-13), including four ent-cleistanthane-type diterpenoids (1-4), eight 15,16-di-nor-ent-cleistanthane-type diterpenoids (5-12), and one 17-nor-ent-pimarane-type diterpenoid (13) as well as one known diterpenoid, cleistanthol (14), were isolated. All of these diterpenoids feature a 2α,3α-dihydroxy unit within the A ring, and their structures were elucidated by spectroscopic data analysis, electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. Compound 14 displayed moderate inhibitory activity against Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, and Shigella flexneri with the same minimum inhibitory concentration value of 12 µg/mL as well as activity against vesicular stomatitis virus and influenza A virus.


Assuntos
Anti-Infecciosos , Diterpenos , Anti-Infecciosos/farmacologia , Diterpenos/química , Estrutura Molecular , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química
19.
Nat Commun ; 13(1): 2079, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440123

RESUMO

The emergence of new highly pathogenic and drug-resistant influenza strains urges the development of novel therapeutics for influenza A virus (IAV). Here, we report the discovery of an anti-IAV microbial metabolite called APL-16-5 that was originally isolated from the plant endophytic fungus Aspergillus sp. CPCC 400735. APL-16-5 binds to both the E3 ligase TRIM25 and IAV polymerase subunit PA, leading to TRIM25 ubiquitination of PA and subsequent degradation of PA in the proteasome. This mode of action conforms to that of a proteolysis targeting chimera which employs the cellular ubiquitin-proteasome machinery to chemically induce the degradation of target proteins. Importantly, APL-16-5 potently inhibits IAV and protects mice from lethal IAV infection. Therefore, we have identified a natural microbial metabolite with potent in vivo anti-IAV activity and the potential of becoming a new IAV therapeutic. The antiviral mechanism of APL-16-5 opens the possibility of improving its anti-IAV potency and specificity by adjusting its affinity for TRIM25 and viral PA protein through medicinal chemistry.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Endonucleases/metabolismo , Humanos , Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
20.
Antiviral Res ; 198: 105254, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35101534

RESUMO

Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid global emergence of SARS-CoV-2 highlights the importance and urgency for potential drugs to control the pandemic. The functional importance of RNA-dependent RNA polymerase (RdRp) in the viral life cycle, combined with structural conservation and absence of closely related homologs in humans, makes it an attractive target for designing antiviral drugs. Nucleos(t)ide analogs (NAs) are still the most promising broad-spectrum class of viral RdRp inhibitors. In this study, using our previously developed cell-based SARS-CoV-2 RdRp report system, we screened 134 compounds in the Selleckchemicals NAs library. Four candidate compounds, Fludarabine Phosphate, Fludarabine, 6-Thio-20-Deoxyguanosine (6-Thio-dG), and 5-Iodotubercidin, exhibit remarkable potency in inhibiting SARS-CoV-2 RdRp. Among these four compounds, 5-Iodotubercidin exhibited the strongest inhibition upon SARS-CoV-2 RdRp, and was resistant to viral exoribonuclease activity, thus presenting the best antiviral activity against coronavirus from a different genus. Further study showed that the RdRp inhibitory activity of 5-Iodotubercidin is closely related to its capacity to inhibit adenosine kinase (ADK).


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Inibidores da Síntese de Ácido Nucleico/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tubercidina/análogos & derivados , Linhagem Celular , Desoxiguanosina/análogos & derivados , Desoxiguanosina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/genética , Tionucleosídeos/farmacologia , Tubercidina/farmacologia , Vidarabina/análogos & derivados , Vidarabina/farmacologia , Fosfato de Vidarabina/análogos & derivados , Fosfato de Vidarabina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...